已知Sn为数列的前n项和,a1=1,Sn=n²·an,求通项公式.已知数列中,a1=1,a2=2,An+2 =3An+1 -2An,求通项公式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/09/10 16:36:04
已知Sn为数列的前n项和,a1=1,Sn=n²·an,求通项公式.已知数列中,a1=1,a2=2,An+2 =3An+1 -2An,求通项公式.

已知Sn为数列的前n项和,a1=1,Sn=n²·an,求通项公式.已知数列中,a1=1,a2=2,An+2 =3An+1 -2An,求通项公式.
已知Sn为数列的前n项和,a1=1,Sn=n²·an,求通项公式.
已知数列中,a1=1,a2=2,An+2 =3An+1 -2An,求通项公式.

已知Sn为数列的前n项和,a1=1,Sn=n²·an,求通项公式.已知数列中,a1=1,a2=2,An+2 =3An+1 -2An,求通项公式.
1,
这道题比较简单,也比较典型,给你两种方法吧.
第一种解法:

n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an=(n-1)a(n-1)/(n+1)
a(n-1)=(n-2)a(n-2)/n
…………
a2=a1/3
连乘
a2a3...an=a1a2...a(n-1)[(n-1)(n-2)...1]/[(n+1)n...3]=2a1a2...a(n-1)/[n(n+1)]
an=2a1/[n(n+1)]=2/[n(n+1)]
n=1时,a1=2/(1×2)=1,同样满足.
数列{an}的通项公式为an=2/[n(n+1)]
第二种解法:

n=1时,a1=1
n≥2时,
Sn=n²an
Sn-1=(n-1)²a(n-1)
an=Sn-Sn-1=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)(n-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1) 到这里和第一种方法是一样的.
n(n+1)an=n(n-1)a(n-1)
an/[n(n-1)]=a(n-1)/[n(n+1)]
an[1/(n-1)-1/n]=a(n-1)[1/n-1/(n+1)]
an/[1/n-1/(n+1)]=a(n-1)/[1/(n-1)-1/n]
a1/(1/1-1/2)=1/(1/2)=2
数列{an/[1/n-1/(n+1)]}是各项均为2的常数数列.
an/[1/n-1/(n+1)]=2
an=2[1/n-1/(n+1)]=2/[n(n+1)]
数列{an}的通项公式为an=2/[n(n+1)]
我想问一下第二题a2不是3吗

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 数列{an}的前n项和为Sn,已知a1+2,Sn+1=Sn-2nSn+1Sn,求an紧急紧急!求救中!sos 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差 已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn 已知数列{An}的前N项和为Sn且a1=1,Sn=n^2乘An.猜想Sn的表达式?有知道的吗? 已知数列{an}的前n项和为Sn,a1=1,Sn=2a(n+1),则Sn= 已知数列的前n项和为Sn,且an=Sn·Sn-1(n>=2),a1=2/9,则a10= 已知数列{an}的前n项和为Sn,a1=1,Sn=2a(n+1)则Sn等于____ 设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若数列...设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an} 的通项公式 数列{an}的前n项和记为sn,已知a1=1,an+1=((n+2)/n)sn(n∈n+),证明:(1)数列{sn/n}是等比数列;(2)sn+1=4an 详细 数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2an-n(n-1) (1)证明:数列{(n+1)/n*Sn}是等差数列,求Sn 数列{an}的前n项和为Sn已知a1=0.5,Sn=n2an-n(n-1)写出SN与SN-1的递推关系式并求SN关于N的表达式